Heron's Formula

S.no	Term	Description
1	Mensuration	It is branch of mathematics which is concerned about the measurement of length, area and Volume of plane and Solid figure
2	Perimeter	a)The perimeter of plane figure is defined as the length of the boundary b)It units is same as that of length i.e. m ,cm,km
3	Area	a)The area of the plane figure is the surface enclosed by its boundary b) It unit is square of length unit. i.e. m², km²

Unit Conversion

1 Meter	10 Decimeter	100 centimeter
1 Decimeter	10 centimeter	100 millimeter
1 Km	10 Hectometer	100 Decameter
1 Decameter	10 meter	1000 centimeter
1 square Meter	100 square Decimeter	10000 square

centimeter

1 square Decimeter	100 square centimeter	10000 square millimeter
1 Hectare	100 square Decameter	10000 square meter
1 square myraimeter	100 square kilometer	10 ⁸ square meter

Perimeter and Area of Different Figure

N	Shape	Perimeter/heig	jht	Area
1	Right angle triangle	P=b+h+d Height =h		$A = \frac{1}{2}bh$
	Base =b, Height =h			
	Hypotenuse=d			
2	Isosceles right angled triangle	$p = 2a + a\sqrt{2}$		$A = \frac{1}{2}a^2$
	Equal side =a	Height=a		2
3	Any triangle of sides a,b ,c	P=a+b+c		$A = 2\sqrt{s(s-a)(s-b)(s-c)}$
				$A = 2\sqrt{s(s-a)(s-b)(s-c)}$ Where $s = \frac{a+b+c}{2}$
				This is called Heron's formula (sometimes called Hero's formula) is named after Hero of Alexandria
4	Square Side =a		P=4a	A=a²

5	Rectangle of		
	Length and		
	breadth L and B		
	respectively		

$$P=2L+2B$$

Two sides are given as a and b

$$P=2a+2b$$

A= BaseX height

When the diagonal is also given ,say d

Then

$$A = 2\sqrt{s(s-a)(s-b)(s-d)}$$

Where
$$s = \frac{a+b+d}{2}$$

$$p = 2\sqrt{d_1^2 + d_2^2}$$

 $A = \frac{1}{2}d_1d_2$

Diagonal d_1 and d_2 are given

$$s = \frac{1}{2}\sqrt{d_1^2 + d_2^2}$$

a) P=a+b+c+d

- 8 Quadrilateral
 - a) All the sides are given a,b,c ,d
 - b) Both the diagonal are perpendicular to each other
 - c) When a diagonal and perpendicular to diagonal are given

a)

$$A = \sqrt{(s-a)(s-b)(s-c)(s-d)}$$

where $s = \frac{a+b+c+d}{2}$

b)
$$A = \frac{1}{2} d_1 d_2$$

where $d_1 \ and \ d_2 \ are the diagonal$

C)
$$A = \frac{1}{2}d(h_1 + h_2)$$

where d is diagonal and h_{1} and h_{2} are perpendicular to that $% \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

